Study on Chemical Constituents of *Salacia chinensis* L. Collected in Vietnam

Tran Thi Minh^a, Nguyen Thi Hoang Anh^b, Vu Dao Thang^a, and Tran Van Sung^b

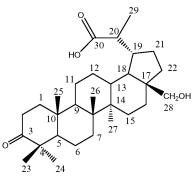
^a Hanoi University of Technology, Dai Co Viet street, Hanoi, Vietnam

Reprint requests to Prof. Dr. Tran Van Sung. Fax: +84 4 8361283. E-mail: tvs@ich.vast.ac.vn

Z. Naturforsch. 2008, 63b, 1411 - 1414; received May 1, 2008

A new triterpene, 28-hydroxy-3-oxo-30-lupanoic acid (1), and a triterpene found for the first time as a natural product, 3-oxo-lupane-30-al (2), besides three known triterpenes, 29-nor-21 α -H-hopane-3,22-dione (3), 21 α -H-hop-22(29)-ene-3 β , 30-diol (4), and betulin (5) have been isolated from the n-hexane extract of *Salacia chinensis* stems. Their structures were elucidated on the basis of spectral studies.

Key words: Salacia chinensis, Triterpenes, Lupanes, Hopanes, Friedelanes


Introduction

Salacia chinensis L. belongs to the family Celastraceae and is widely distributed in Myanmar, Thailand, Malaysia, China, and India. It is a shrub and used, e.g., as an antiinflammatory, antidiabetic, blood tonic, carminative, and emmenagog agent [1]. In Vietnamese traditional medicine, the roots and stems of this species have been used e.g. for treatment of rheumatism, backache and depression [2]. A Japanese research group found that the 80% aqueous methanolic extract of S. chinensis collected in Thailand showed hypoglycemic, gastroprotective nitric oxide production inhibitory effects, α -glucosidase and aldose reductase inhibitory and antioxidative activities [3].

This paper deals with the isolation and structure elucidation of a new triterpene, 28-hydroxy-3-oxo-30-lupanoic acid (1), and a triterpene found for the first time as a natural product, 3-oxo-lupane-30-al (2), besides three known triterpenes, 29-nor-21 α -H-hopane-3,22-dione (3), 21 α -H-hop-22(29)-ene-3 β , 30-diol (4), and betulin (5), from the n-hexane extract of *Salacia chinensis* stems.

Results and Discussion

Compound 1 showed the molecular ion peak at m/z = 471.34761 (calcd. 471.34798 for $C_{30}H_{47}O_4$, $[M-H]^-$) in the negative ESI-HRMS. Its molecular formula has been concluded from the MS, ¹H and ¹³C NMR data as $C_{30}H_{48}O_4$, suggesting that

28-hydroxy-3-oxo-30-lupanoic acid (1)

this is a triterpene. The IR spectrum had absorptions at 3490 (OH), 1733 and 1706 cm⁻¹ (a ketone in a sixmembered ring and a carboxylic group). The ¹H NMR spectrum revealed 6 methyl signals as 5 singlets at δ = 0.96, 1.00, 1.05, 1.09, and 1.10 and one doublet at δ = 1.04 with J = 6.7 Hz. The latter together with a double quartet (dq) at δ = 2.72 (J = 3.0, 6.7 Hz), suggested the existence of a >C-CH-CH₃ moiety. Furthermore, the typical signals of a -CH₂OH group were observed at $\delta = 3.75$ and 3.28 with a geminal coupling constant of 11 Hz. The ¹³C NMR spectrum indicated 30 carbon atoms, among them 6 methyls, two carbonyls, one of which was a ketone group ($\delta_{\rm C}$ = 220.2) assigned to the 3-oxo group, and the other one was a carboxylic group $(\delta_{\rm C} = 179.3)$, and a hydroxymethyl group at $\delta_{\rm C} = 59.8$. The analysis of the spectroscopic data and a comparison of the chemical shifts of the tertiary methyl groups

0932–0776 / 08 / 1200–1411 $\$ 06.00 © 2008 Verlag der Zeitschrift für Naturforschung, Tübingen \cdot http://znaturforsch.com

b Institute of Chemistry, Vietnamese Academy of Science and Technology, 18-Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam

3-oxo-lupane-30-al (2)

with those of other lupene derivatives [4] suggested the structure depicted for 1. A study of the CH longrange correlations from the HMBC and the correlation from the ¹H-¹H COSY spectra confirmed that the carboxylic group was positioned at C-30 [correlation of C-30 ($\delta_{\rm C}$ = 179.3) with H-20 ($\delta_{\rm H}$ = 2.72), H-19 ($\delta_{\rm H}$ = 2.34) and CH₃-29 ($\delta_{\rm H}$ = 1.04)]. The hydroxymethyl group was assigned to C-28. This was confirmed by the ${}^{3}J_{\rm CH}$ correlations between 2H-28 ($\delta_{\rm H}$ = 3.75, 3.28) and C-22 ($\delta_{\rm C}$ = 34.4), and C-16 ($\delta_{\rm C}$ = 29.5), and C-17 $(\delta_{\rm C} = 47.9)$. The 3-oxo group was deduced from the $^3J_{\rm CH}$ correlations between C-3 ($\delta_{\rm C}$ = 220.2) and 3H-23 $(\delta_{\rm H}$ = 1.09), 3H-24 ($\delta_{\rm H}$ = 1.05), and 2H-2 ($\delta_{\rm H}$ = 2.52) in the HMBC spectrum. Consequently, the structure of 1 was determined as the new triterpene 28-hydroxy-3-oxo-30-lupanoic acid.

Compound 2 revealed the molecular ion peak at $m/z = 439 \text{ [M-H]}^-$ in the negative ESI-MS. The MS and NMR spectroscopic data suggested the molecular formula C₃₀H₄₈O₂. The FT-IR spectrum showed absorptions of ketone and aldehyde groups at 1699 and 2708 cm⁻¹. The ¹H and ¹³C NMR spectral data of 2 were very similar to those of 1 with two exceptions: instead of the signal of the hydroxymethyl group at C-28 in 1, compound 2 exhibits a methyl group at this position ($\delta_{\rm C}$ = 17.9). Furthermore the carboxylic group at C-30 in compound 1 has been replaced by an aldehyde group [$\delta_H = 9.63$ (s, 1H) and $\delta_C = 205.0$]. Finally, the structure of 2 was determined as 3-oxo-lupane-30al. Compound 2 was isolated for the first time as a natural product. However, it has previously been synthesized by catalytic hydrogenation (Pd-C, methanol, 1 atm H₂) from 3-oxo-lup-20(29)-ene-30-al, isolated from Maytenus nemerosa [5].

Compounds 3 and 4 have the molecular formula of $C_{29}H_{46}O_2$ and $C_{30}H_{50}O_2$, respectively, according to their MS and NMR spectral data. Their 1H and ^{13}C NMR spectroscopic data are very similar. The

29-nor-21-α-H-hopane-3,22-dione (**3**)

 $21-\alpha$ -H-hop-22(29)-ene- 3β , 30-diol (4)

chemical shifts of the methyl groups in **3** and **4** are typical for a hopane skeleton when compared with other hopane triterpenes [6]. A detailed analysis of the spectroscopic data led to the conclusion that compound **3** was 29-nor-21 α -H-hopane-3,22-dione, and **4** was 21- α -H-hop-22(29)-ene-3 β ,30-diol. Compound **3** has previously been isolated from *Mallotus paniculatus* (Euphorbiaceae) [6] and **4** from *Rhodomyrtus tomentosa* (Myrtaceae) [7]. Their ¹H and ¹³C NMR data are given in the Experimental Section and in Table 1, respectively.

Compound **5** was obtained as needles. It showed a molecular ion peak at m/z = 442 [M]⁺ in the EI-MS, corresponding to $C_{30}H_{50}O_2$. The ¹H and ¹³C NMR data of **5** are in good agreement with those of 20(29)-lupen-3,28-diol (betulin) [8].

Experimental Section

General

Melting points were determined on a Botius melting point apparatus (Germany). Optical rotation values: Polarime-

Table 1. 13 C NMR spectral data of $1-4^a$.

rabic 1.	ic 1. Civil spectral data of 1-4.			
Position	1	2	3	4
1	39.8	39.6	39.8	39.9
2	34.4	34.1	34.1	27.6
3	220.2	218.0	218.1	79.5
4	47.8	47.1	47.3	39.7
5	55.1	54.9	54.8	56.5
6	19.9	19.7	19.7	19.2
7	33.8	33.7	33.5	35.3
8	41.2	40.8	40.7	41.8
9	49.7	49.7	49.6	49.8
10	37.1	36.9	36.9	38.1
11	21.5	21.3	21.5	22.0
12	27.1	27.3	27.2	27.8
13	37.2	37.5	49.5	44.8
14	43.2	42.9	42.9	43.7
15	26.7 ^b	26.5 ^b	34.9	28.4
16	29.5 ^b	23.7^{b}	27.7	36.4
17	47.9	43.1	52.6	51.6
18	48.0	49.4	43.1	43.9
19	40.4	37.9	39.5	40.7
20	41.4	47.4	27.3	32.6
21	23.6 ^b	40.5	37.2	39.2
22	34.4	35.3	212.7	155.6
23	26.8	26.7	26.8	28.5
24	21.2	21.1	21.0	15.0
25	16.1	15.9	15.7	16.0
26	15.9	15.8	16.0	16.5
27	14.7	14.3	18.0	16.6
28	59.8	17.9	14.4	18.1
29	9.7	7.4	_	107.0
30	179.3	205.0	29.2	64.9
	,			

^a In CD₃OD, 125 MHz; ^b not exactly assignable to the respective C atoms; values marked with an asterisk may be interchanged within each column.

ter POLAX-2L (Japan). FT-IR: Nicolet IMPACT 410. EI-MS: HP5989B. ESI-MS: AGILENT 1100 LC-MSD trap spectrometer. NMR: Bruker Avance 500 MHz (1 H) and 125 MHz (13 C, 13 C DEPT), TMS ($\delta = 0.0$, 1 H) and CD₃OD ($\delta = 49.0$, 13 C) as references. Column chromatography (CC): silica gel (70 – 230 and 230 – 400 mesh, Merck). Thin layer chromatography (TLC): DC-Alufolien 60 F₂₅₄ (Merck).

Plant material

Stems of *Salacia chinensis* were collected in Thua Thien – Hue province, Vietnam in March 2006. The species was identified by Dr. Ngo Van Trai, Institute of Materia Medica, Hanoi. A voucher specimen has been deposited in the Herbarium of this Institute (SA 611/04).

The dried and powdered stems of *Salacia chinensis* (2.1 kg) were extracted with 80% aqueous MeOH at r. t. MeOH was evaporated *in vacuo*, the residue was partitioned with n-hexane followed by EtOAc and n-BuOH. The n-hexane extract (6.81 g) was chromatographed on silica gel with solvents of increasing polarity (0–100% EtOAc in n-hex-

ane) to give 16 fractions. The fractions were further purified to afford compounds 1, 2, 3, 4, and 5.

Extraction and isolation

28-Hydroxy-3-oxo-30-lupanoic acid (1)

Fraction 16 (*n*-hexane: EtOAc = 70:30) was crystallized from *n*-hexane: CHCl₃ = 9:1 to give 0.028 g of compound 1 (0.0013 %) as a white powder; $R_{\rm f} = 0.27$ (*n*-hexane: EtOAc = 5:2). – M. p. 285–287 °C. – $[\alpha]_{\rm D}^{25}$ = +110° (CH₃OH: CH₂Cl₂ = 11:1, c = 0.1364). – IR (KBr): v = 3490, 2945, 2866, 1733, 1706, 1455, 1385, 1025 cm⁻¹. – ESI-MS: m/z = 471 [M–H]⁻. – HRMS ((–)-ESI): m/z = 471.34761 (calcd. 471.34798 for C₃₀H₄₇O₄, [M–H]⁻). – ¹H NMR (500 MHz, CDCl₃): δ = 3.75, 3.28 (each 1H, d, 11.0 Hz, 2H-28), 2.72 (1H, dq, 3.0, 6.7 Hz, H-20), 1.10 (3H, s), 1.09 (3H, s), 1.05 (3H, s), 1.04 (3H, d, 6.7 Hz), 1.00 (3H, s) and 0.96 (3H, s). – ¹³C NMR: see Table 1.

3-Oxo-lupane-30-al (2)

From fraction 4 (*n*-hexane : EtOAc = 95:5). Crystallization of this fraction from *n*-hexane gave 0.014 g of compound **2** (0.00067 %), white crystals; $R_f = 0.65$ (*n*-hexane : EtOAc = 7:1). – M. p. 224–225 °C. – IR (KBr): v = 2931, 2866, 2708, 1699, 1462, 1387, 136 cm⁻¹. – ESI-MS: m/z = 440 [M]⁺ ($C_{30}H_{48}O_2$). – ¹H NMR (500 MHz, CDCl₃): $\delta = 9.6$ (1H, s, H-30), 2.65 (1H, dq, 3.1, 6.8 Hz, H-20), 2.50 (2H, m), 2.4 (2H, m), 1.10 (3H, s), 1.08 (3H, s), 1.04 (3H, d, 6.8 Hz), 1.03 (3H, s), 0.96 (3H, s), 0.95 (3H, s), 0.81 (3H, s). – ¹³C NMR: see Table 1.

29-nor-21 α -H-Hopane-3,22-dione (3)

Fraction 7 (*n*-hexane : EtOAc = 90 : 10) was crystallized from *n*-hexane to yield 0.045 g (0.0021 %) of compound **3** as white crystals; $R_{\rm f}=0.44$ (*n*-hexane : EtOAc = 5 : 1). – M. p. 272 – 273 °C. – IR (KBr): v =2945, 2873, 1701, 1453, 1378, 1164 cm⁻¹. – EI-MS: m/z (%) = 426 [M]⁺ (C₂₉H₄₆O₂), 411 (46.8), 340 (15.7), 203 (48.2), 189 (59.3), 163 (63.0), 147 (47.2), 121 (68.9), 107 (73.8), 95 (100.0), 81 (93.5), 67 (71.6), 55 (88.0). – ¹H NMR (500 MHz, CDCl₃): δ = 2.61 (1H, m), 2.44 (2H, m), 2.15 (3H, s), 2.05 (1H, m), 1.87 (2H, m), 0.97 (3H, s). – ¹³C NMR (125 MHz, CDCl₃): see Table 1.

21α -H-Hop-22(29)-ene-3 β ,30-diol (4)

Fraction 13 (*n*-hexane : EtOAc = 80 : 20) was crystallized from *n*-hexane : CHCl₃ = 15 : 1, giving 0.036 g of 4 (0.0017 %) as white crystals; $R_{\rm f}$ = 0.34 (*n*-hexane : EtOAc = 5 : 2). – M. p. 246 – 247 °C. – IR (KBr): v = 3321, 2936, 2865, 1650, 1452, 1040, 915 cm⁻¹. – ESI-MS: m/z = 425 [M + H – H₂O]⁺. – ¹H NMR (500 MHz, CDCl₃ + CD₃OD): δ = 4.95, 4.87 (each 1H), 4.05 (2H, s, 2H-30), 1.01, 0.96,

0.93, 0.83, 0.76, 0.74 (each 3H, s). – 13 C NMR (125 MHz, CDCl₃ + CD₃OD): see Table 1.

Betulin (5)

Fraction 10 (*n*-hexane: EtOAc = 80:20) was crystallized from *n*-hexane to yield white crystals; $R_{\rm f}=0.53$ (*n*-hexane: ethyl acetate = 5:1). – M. p. 217–218 °C. – IR (KBr): $\nu=3377,\ 3084,\ 2934,\ 2876,\ 1642,\ 1459,\ 1379,\ 1027\ {\rm cm}^{-1}$. – EI-MS: m/z (%) = 442 [M]⁺, 427 (5.2), 411

(24.6), 393 (5.1), 368 (3.9), 234 (17.5), 203 (33.0), 189 (38.2), 175 (18.9), 147 (23.3), 121 (43.2), 107 (51.3), 95 (72.1), 69 (80.5), 55 (100.0). - H NMR (500 MHz, CDCl₃ + CD₃OD): δ = 4.68 (1H, s), 4.57 (1H, s), 3.77 (1H, d), 3.38 (1H, m), 3.29 (1H, d), 2.37(1H, m), 1.94 (2H, m).

Acknowledgements

We thank Mr. Dang Vu Luong for NMR measurements and Dr. Ngo Van Trai, Hanoi, for the identification of the plant material.

- [1] T. Morikawa, A. Kishi, Y. Pongpiriyadacha, H. Matsuda, M. Yoshikawa. J. Nat. Prod. 2003, 66, 1191–1196.
- [2] V. V. Chi, *Dictionary of Vietnamese medicinal plants*, Medicinal Publishing House, 236, **1996**.
- [3] M. Yoshikawa, Y. Pongpiriyadacha, A. Kishi, T. Kageura, T. Wang, T. Morikawa, H. Matsuda, Yakugaku Zasshi 2003, 123, 871 – 880.
- [4] W.-W. Hui, M.-M. Li, *Phytochemistry* **1976**, *15*, 561 562.
- [5] F. Sheng-Ding, E. D. Berry, D. G. Lynn, S. M. Hecht, J. Cambell, W. S. Lynn. *Phytochemistry* 1984, 23, 631–633.
- [6] W.-H. Hui, M.-M. Li, Phytochemistry 1976, 15, 985 986
- [7] W.-H. Hui, M.-M. Li, *Phytochemistry* **1976**, *15*, 1741 1743.
- [8] S. El. D. Kadriya, A. Rwaida, Al-Haidari, J. S. Mossa, A.-M. Ateya, Saudi Pharmaceutical Journal 2003, 11, 184-191.